Water Shortage at the Tap by jackie

  we will writing about this on an ongoing basis at is effecting many parts of the world that just a few years ago there was not a problem.  Will use many sources and try and use science and not the politics!

Water scarcity

In Meatu district, Shinyanga region, Tanzania (Africa), water most often comes from open holes dug in the sand of dry riverbeds, and it is invariably contaminated.

Physical water scarcity and economic water scarcity by country. 2006

Water scarcity is the lack of sufficient available water resources to meet the demands of water usage within a region. It already affects every continent and around 2.8 billion people around the world at least one month out of every year. More than 1.2 billion people lack access to clean drinking water.[1]

Water scarcity involves water stress, water shortage or deficits, and water crisis. While the concept of water stress is relatively new, it is the difficulty of obtaining sources of fresh water for use during a period of time and may result in further depletion and deterioration of available water resources.[2] Water shortages may be caused by climate change, such as altered weather patterns including droughts or floods, increased pollution, and increased human demand and overuse of water.[3] A water crisis is a situation where the available potable, unpolluted water within a region is less than that region’s demand.[4] Water scarcity is being driven by two converging phenomena: growing freshwater use and depletion of usable freshwater resources.[5]

Water scarcity can be a result of two mechanisms: physical (absolute) water scarcity and economic water scarcity, where physical water scarcity is a result of inadequate natural water resources to supply a region’s demand, and economic water scarcity is a result of poor management of the sufficient available water resources. According to the United Nations Development Programme, the latter is found more often to be the cause of countries or regions experiencing water scarcity, as most countries or regions have enough water to meet household, industrial, agricultural, and environmental needs, but lack the means to provide it in an accessible manner.[6]

The reduction of water scarcity is a goal of many countries and governments. The UN recognizes the importance of reducing the number of people without sustainable access to clean water and sanitation. The Millennium Development Goals within the United Nations Millennium Declaration state that by 2015 they resolve to

“halve the proportion of people who are unable to reach or to afford safe drinking water

More than one in every six people in the world is water stressed, meaning that they do not have access to potable water.  In China, more than 538 million people are living in a water-stressed region. Much of the water stressed population currently live in river basins where the usage of water resources greatly exceed the renewal of the water source.

Changes in climate

Another popular opinion is that the amount of available freshwater is decreasing because of climate change. Climate change has caused receding glaciers, reduced stream and river flow, and shrinking lakes and ponds. Many aquifers have been over-pumped and are not recharging quickly. Although the total fresh water supply is not used up, much has become polluted, salted, unsuitable or otherwise unavailable for drinking, industry and agriculture. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.

A New York Times article, “Southeast Drought Study Ties Water Shortage to Population, Not Global Warming”, summarizes the findings of Columbia University researcher on the subject of the droughts in the American Southeast between 2005 and 2007. The findings published in the Journal of Climate say that the water shortages resulted from population size more than rainfall. Census figures show that Georgia’s population rose from 6.48 to 9.54 million between 1990 and 2007.] After studying data from weather instruments, computer models and measurements of tree rings which reflect rainfall, they found that the droughts were not unprecedented and result from normal climate patterns and random weather events. “Similar droughts unfolded over the last thousand years”, the researchers wrote, “Regardless of climate change, they added, similar weather patterns can be expected regularly in the future, with similar results.”[11] As the temperature increases, rainfall in the Southeast will increase but because of evaporationthe area may get even drier. The researchers concluded with a statement saying that any rainfall comes from complicated internal processes in the atmosphere and are very hard to predict because of the large amount of variables.

Causes of water crisis

Water is the underlying tenuous balance of safe water supply, but controllable factors such as the management and distribution of the water supply itself contribute to further scarcity.

A 2006 United Nations report focuses on issues of governance as the core of the water crisis, saying “There is enough water for everyone” and “Water insufficiency is often due to mismanagement, corruption, lack of appropriate institutions, bureaucratic inertia and a shortage of investment in both human capacity and physical infrastructure”. Official data also shows a clear correlation between access to safe water and GDP per capita.

It has also been claimed, primarily by economists, that the water situation has occurred because of a lack of property rights, government regulations and subsidies in the water sector, causing prices to be too low and consumption too high

Vegetation and wildlife are fundamentally dependent upon adequate freshwater resources. Marshes, bogs and riparian zones are more obviously dependent upon sustainable water supply, but forests and other upland ecosystems are equally at risk of significant productivity changes as water availability is diminished. In the case of wetlands, considerable area has been simply taken from wildlife use to feed and house the expanding human population. But other areas have suffered reduced productivity from gradual diminishing of freshwater inflow, as upstream sources are diverted for human use.

Overview of regions suffering crisis impacts

Water deficits, which are already spurring heavy grain imports in numerous smaller countries, may soon do the same in larger countries, such as China and India. The water tables are falling in scores of countries (including Northern China, the US, and India) due to widespread over pumping using powerful diesel and electric pumps.  Even with the overpumping of its aquifers, China is developing a grain deficit. When this happens, it will almost certainly drive grain prices upward. Most of the 3 billion people projected to be added worldwide by mid-century will be born in countries already experiencing water shortages. Unless population growth can be slowed quickly, it is feared that there may not be a practical non-violent or humane solution to the emerging world water shortage.

According to a UN climate report, the Himalayan glaciers that are the sources of Asia‘s biggest rivers – Ganges, Indus, Brahmaputra, Yangtze, Mekong, Salween and Yellowcould disappear by 2035 as temperatures rise.

Water scarcity’s effects on environment

Through the last hundred years, more than half of the Earth’s wetlands have been destroyed and have disappeared. These wetlands are important not only because they are the habitats of numerous inhabitants such as mammals, birds, fish, amphibians, and invertebrates, but they support the growing of rice and other food crops as well as provide water filtration and protection from storms and flooding. Freshwater lakes such as the Aral Sea in central Asia have also suffered. Once the fourth largest freshwater lake, it has lost more than 58,000 square km of area and vastly increased in salt concentration over the span of three decades

Screen Shot 2015-07-13 at 12.37.40 PM

An abandoned ship in the former Aral Sea, near Aral, Kazakhstan.

Climate change

Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water within the hydrosphere subject to transpiration and evaporation processes, thereby causing accretion in water vapour and cloud cover, the primary absorbers of infrared radiation in the earth’s atmosphere. Adding water to the system has a forcing effect on the whole earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.

Depletion of freshwater resources

Apart from the conventional surface water sources of freshwater such as rivers and lakes, other resources of freshwater such as groundwater and glaciers have become more developed sources of freshwater, becoming the main source of clean water. Groundwater is water that has pooled below the surface of the Earth and can provide a usable quantity of water through springs or wells. These areas where groundwater is collected are also known as aquifers. Glaciers provide freshwater in the form meltwater, or freshwater melted from snow or ice, that supply streams or springs as temperatures rise. More and more of these sources are being drawn upon as conventional sources’ usability decreases due to factors such as pollution or disappearance due to climate changes. The exponential growth rate of the human population is a main contributing factor in the increasing use of these types of water resources.

Groundwater

Until recent history, groundwater was not a highly utilized resource. In the 1960s, more and more groundwater aquifers developed. Changes in knowledge, technology and funding have allowed for focused development into abstracting water from groundwater resources away from surface water resources. These changes allowed for progress in society such as the “agricultural groundwater revolution,” expanding the irrigation sector allowing for increased food production and development in rural areas.[49] Groundwater supplies nearly half of all drinking water in the world.[50] The large volumes of water stored underground in most aquifers have a considerable buffer capacity allowing for water to be withdrawn during periods of drought or little rainfall.[48] This is crucial for people that live in regions that cannot depend on precipitation or surface water as a supply alone, instead providing reliable access to water all year round. As of 2010, the world’s aggregated groundwater abstraction is estimated at approximately 1,000 km3 per year, with 67% used for irrigation, 22% used for domestic purposes and 11% used for industrial purposes.[48] The top ten major consumers of abstracted water (India, China, United States of America, Pakistan, Iran, Bangladesh, Mexico, Saudi Arabia, Indonesia, and Italy) make up 72% of all abstracted water use worldwide.[48] Groundwater has become crucial for the livelihoods and food security of 1.2 to 1.5 billion rural households in the poorer regions of Africa and Asia.[51]

Although groundwater sources are quite prevalent, one major area of concern is the renewal rate or recharge rate of some groundwater sources. Abstracting from groundwater sources that are non-renewable could lead to exhaustion if not properly monitored and managed.[52] Another concern of increased groundwater usage is the diminished water quality of the source over time. Reduction of natural outflows, decreasing stored volumes, declining water levels and water degradation are commonly observed in groundwater systems.[48] Groundwater depletion may result in many negative effects such as increased cost of groundwater pumping, induced salinity and other water quality changes, land subsidence, degraded springs and reduced baseflows. Human pollution is also harmful to this important resource.

Glaciers

Glaciers are noted as a vital water source due to their contribution to stream flow. Rising global temperatures have noticeable effects on the rate at which glaciers are melting, causing glaciers in general to shrink worldwide.[53] Although the meltwater from these glaciers are increasing the total water supply for the present, the disappearance of glaciers in the long term will diminish available water resources. Increased meltwater due to rising global temperatures can also have negative effects such as flooding of lakes and dams and catastrophic results.

Outlook

Wind and solar power such as this installation in a village in northwest Madagascar can make a difference in safe water supply.

Construction of wastewater treatment plants and reduction of groundwater overdrafting appear to be obvious solutions to the worldwide problem; however, a deeper look reveals more fundamental issues in play. Wastewater treatment is highly capital intensive, restricting access to this technology in some regions; furthermore the rapid increase in population of many countries makes this a race that is difficult to win. As if those factors are not daunting enough, one must consider the enormous costs and skill sets involved to maintain wastewater treatment plants even if they are successfully developed.

Reduction in groundwater overdrafting is usually politically very unpopular and has major economic impacts to farmers; moreover, this strategy will necessarily reduce crop output, which is something the world can ill-afford, given the population level at present.

At more realistic levels, developing countries can strive to achieve primary wastewater treatment or secure septic systems, and carefully analyse wastewater outfall design to minimise impacts to drinking water and to ecosystems. Developed countries can not only share technology better, including cost-effective wastewater and water treatment systems but also in hydrological transport modeling. At the individual level, people in developed countries can look inward and reduce overconsumption, which further strains worldwide water consumption. Both developed and developing countries can increase protection of ecosystems, especially wetlands and riparian zones. These measures will not only conserve biota, but also render more effective the natural water cycle flushing and transport that make water systems more healthy for humans.

A range of local, low-tech solutions are being pursued by a number of companies. These efforts center around the use of solar power to distill water at temperatures slightly beneath that at which water boils. By developing the capability to purify any available water source, local business models could be built around the new technologies, accelerating their uptake. For example, bedouins from the town of Dahab in Egypt have installed AquaDania’s WaterStillar, which uses a solar thermal collector measuring two square metres to distill from 40 to 60 litres per day from any local water source. This is five times more efficient than conventional stills and eliminates the need for polluting plastic PET bottles or transportation of water supply.

Travel Safe 

Advertisements

4 Comments on “Water Shortage at the Tap by jackie

  1. Excellent blog and very informative!

    This blog really resonates with me as I’m from Australia. Any part of our beautiful country always seems to be under drought, with 7+ years (even more in other parts) of heavy water restrictions resulting from drought.

    I always try to conserve water and power. I think this also stems from living on boats for 21 years, which taught me to conserve water and power. The western world squanders both of these precious resources; for example, we flush our toilets with clean water!
    I think everyone should live on a boat for at least a month or more. When you’re forced to cart water in drums or rely only on wind and solar for power, you soon learn how to conserve everything!

    Like

    • California in the US produces about 1/2 of all the fruits, nuts, and vegetables of the US, under sever water shortage. Texas where I am from is pumping more water from the Edwards Aquifer than is being replaced. Here in Thailand is having water shortage and many villages water is being trucked in. And you are correct about living on a boat! One bright spot is Israel. They are distilling more sea water than they use!

      Liked by 1 person

      • I didn’t know about Israel. Every government (worldwide) could do a lot more in this area and renewable energy, which should have started 30 years ago!

        Although we don’t realise it (yet) but I believe water will become more precious than gold and oil in the near future…many wars have been fought over gold and oil.

        Liked by 1 person

  2. Pingback: Tap-water lost near Bangkok from the Nation Thailand by jackie | LIFE SE ASIA MAGAZINE

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: